Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-(1*H*-tetrazol-5-yl)pyridinium chloride

Jing Dai and Xiao-Chun Wen*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 11 September 2008; accepted 26 September 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.125; data-to-parameter ratio = 16.4.

In the title salt, $C_6H_7N_6^+ \cdot Cl^-$, there are two organic cations with similar conformations and two chloride anions in the asymmetric unit. The pyridine and tetrazole rings are essentially coplanar in each cation, with dihedral angles of 4.94 (15) and 5.41 (14)°. The pyridine N atoms are protonated. The crystal packing is stabilized by $N-H\cdots N$ and $N-H\cdots Cl$ hydrogen bonds, forming an infinite sheets parallel to the (101).

Related literature

For uses of tetrazole derivatives, see: Dai & Fu (2008); Wang et al. (2005); Wen (2008); Xiong et al. (2002).

Experimental

Crystal data

$C_6H_7N_6^+ \cdot Cl^-$
$M_r = 198.63$
Monoclinic, P21/c
a = 14.043 (3) Å
<i>b</i> = 13.238 (3) Å
c = 9.5766 (19) Å
$\beta = 109.35 \ (3)^{\circ}$

 $V = 1679.7 (6) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 298 (2) K $0.45 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Rigaku Mercury2 diffractometer16820 measured reflectionsAbsorption correction: multi-scan
(CrystalClear; Rigaku, 2005)3855 independent reflections $T_{min} = 0.859, T_{max} = 0.920$ $R_{int} = 0.034$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.048 \\ wR(F^2) &= 0.125 \\ S &= 1.11 \\ 3855 \text{ reflections} \end{split} \qquad \begin{array}{l} 235 \text{ parameters} \\ H\text{-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 0.28 \text{ e} \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.23 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···N5 ⁱ	0.86	2.59	3.317 (2)	143
$N1 - H1 \cdot \cdot \cdot N6^{i}$	0.86	2.04	2.894 (2)	171
$N2-H2A\cdots N5^{i}$	0.86	2.15	2.972 (3)	160
$N7 - H7 \cdot \cdot \cdot N11^{ii}$	0.86	2.57	3.304 (2)	144
$N7 - H7 \cdot \cdot \cdot N12^{ii}$	0.86	2.06	2.913 (2)	169
N8-H8A···N11 ⁱⁱ	0.86	2.20	3.024 (3)	160
$N2-H2B\cdots Cl1^{iii}$	0.86	2.36	3.2187 (18)	177
$N3-H3A\cdots Cl2^{i}$	0.86	2.17	3.0047 (19)	165
$N8 - H8B \cdot \cdot \cdot Cl2^{iv}$	0.86	2.39	3.2432 (18)	172
$N9-H9A\cdots Cl1^{v}$	0.86	2.18	3.0031 (18)	160

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2196).

References

- Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, 01444.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). *Inorg. Chem.* 44, 5278–5285.
- Wen, X.-C. (2008). Acta Cryst. E64, m1033.
- Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.

supplementary materials

Acta Cryst. (2008). E64, o2232 [doi:10.1107/81600536808031164]

2-Amino-5-(1H-tetrazol-5-yl)pyridinium chloride

J. Dai and X.-C. Wen

Comment

Tetrazole derivatives have found a wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions, and for the construction of novel metal-organic frameworks (Wang *et al.*, 2005; Xiong *et al.*, 2002; Wen, 2008; Dai & Fu, 2008). We report here the crystal structure of the title salt (Fig. 1).

The title compound contains two organic cations with similar conformation and two Cl⁻ ions in the asymmetric unit. The pyridine N atoms are protonated. The pyridine rings and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 4.94 (15) and 5.41 (14)°. The packing of ions is stabilized by N—H…N and N—H…Cl hydrogen bonds, to form an infinite two-dimensional layers parallel to the (1 0 1) plane in the crystal (Table 1 and Fig. 2).

Experimental

2-Amino-5-cyanopyridine (30 mmol), NaN ₃ (45 mmol), NH₄Cl (33 mmol) and DMF (50 ml) were mixed in a flask under nitrogen atmosphere, and the mixture stirred at 383 K for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding hydrochloric acid (6 *M*) until pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/hydrochloric acid (50:1 ν/ν) solution.

Refinement

All H atoms were fixed geometrically and treated as riding to their carrier atoms, with C—H = 0.93 Å (aromatic) and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (carrier atom).

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The crystal packing of the title compound viewed along the c axis, showing the twodimensional hydrogen bonds network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

2-Amino-5-(1H-tetrazol-5-yl)pyridinium chloride

Crystal	data
---------	------

$C_6H_7N_6^+ \cdot Cl^-$	$F_{000} = 816$
$M_r = 198.63$	$D_{\rm x} = 1.571 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3690 reflections
a = 14.043 (3) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 13.238 (3) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 9.5766 (19) Å	T = 298 (2) K
$\beta = 109.35 \ (3)^{\circ}$	Block, colorless
V = 1679.7 (6) Å ³	$0.45\times0.25\times0.20~mm$
Z = 8	

Data collection

Rigaku Mercury2 diffractometer	3855 independent reflections
Radiation source: fine-focus sealed tube	3123 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -17 \rightarrow 17$
$T_{\min} = 0.859, T_{\max} = 0.920$	$l = -12 \rightarrow 12$
16820 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.0556P)^2 + 0.4684P]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 1.12	$(\Delta/\sigma)_{max} < 0.001$
3855 reflections	$\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

							•
Fractional ator	nic coordinates a	nd isotropic of	r eauivalent i	isotropic d	displacement i	parameters (Å	2)
		real real real real real real real real	1	····· · · · · · · · · · · · · · · · ·	···· I ···· I		/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.56207 (12)	0.65987 (12)	0.17350 (18)	0.0344 (4)
H1	0.5639	0.7245	0.1662	0.041*
N3	0.36346 (13)	0.52444 (13)	0.37792 (19)	0.0368 (4)
НЗА	0.3600	0.5892	0.3818	0.044*
C1	0.62505 (14)	0.60404 (14)	0.1236 (2)	0.0313 (4)
N2	0.68458 (13)	0.64965 (13)	0.0611 (2)	0.0413 (4)
H2A	0.6831	0.7143	0.0523	0.050*
H2B	0.7247	0.6146	0.0292	0.050*
N6	0.40734 (13)	0.37577 (12)	0.33322 (19)	0.0382 (4)
N4	0.31050 (14)	0.45963 (13)	0.4305 (2)	0.0428 (4)
C6	0.42266 (14)	0.47298 (14)	0.3184 (2)	0.0310 (4)
N5	0.33724 (14)	0.37053 (13)	0.4030 (2)	0.0430 (4)
C4	0.49237 (14)	0.51714 (13)	0.2516 (2)	0.0304 (4)
C2	0.62316 (14)	0.49827 (14)	0.1406 (2)	0.0333 (4)
H2	0.6657	0.4574	0.1086	0.040*
C3	0.55896 (15)	0.45611 (14)	0.2039 (2)	0.0336 (4)
H3	0.5587	0.3864	0.2160	0.040*
C5	0.49636 (15)	0.61909 (14)	0.2344 (2)	0.0337 (4)
Н5	0.4537	0.6610	0.2646	0.040*
N7	0.92034 (13)	0.39582 (12)	0.30105 (18)	0.0364 (4)
H7	0.9131	0.4604	0.2998	0.044*
N9	1.13591 (12)	0.26242 (13)	0.12521 (19)	0.0367 (4)
H9A	1.1409	0.3272	0.1246	0.044*
N8	0.80738 (13)	0.38416 (13)	0.4302 (2)	0.0422 (4)
H8A	0.8043	0.4490	0.4319	0.051*
H8B	0.7726	0.3485	0.4708	0.051*
C7	0.86565 (14)	0.33931 (15)	0.3650 (2)	0.0329 (4)
N10	1.19013 (14)	0.19768 (13)	0.0747 (2)	0.0425 (4)
N12	1.08698 (13)	0.11357 (12)	0.15986 (19)	0.0374 (4)
C12	1.07262 (14)	0.21051 (14)	0.1769 (2)	0.0311 (4)
N11	1.16049 (14)	0.10833 (13)	0.0959 (2)	0.0429 (4)
C10	1.00037 (14)	0.25408 (14)	0.2397 (2)	0.0304 (4)
С9	0.94263 (15)	0.19202 (14)	0.3023 (2)	0.0339 (4)
Н9	0.9504	0.1222	0.3025	0.041*
C11	0.98593 (16)	0.35597 (14)	0.2389 (2)	0.0363 (4)
H11	1.0211	0.3983	0.1957	0.044*
C8	0.87624 (15)	0.23312 (15)	0.3618 (2)	0.0337 (4)
H8	0.8378	0.1915	0.4004	0.040*
Cl1	0.84188 (4)	0.97883 (4)	0.45292 (7)	0.04632 (17)

supplementary materials

C12	0.65611 (4)	0.24380 (4)	0.0556	7 (6)	0.04478 (17)	
Atomic displace	nent parameters ($(Å^2)$				
	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
N1	0.0407 (9)	0.0214 (8)	0.0500 (10)	0.0034 (7)	0.0270 (8)	0.0030 (7)
N3	0.0440 (10)	0.0261 (8)	0.0491 (10)	-0.0020 (7)	0.0273 (8)	-0.0008 (7)
C1	0.0332 (10)	0.0274 (9)	0.0362 (10)	0.0024 (7)	0.0157 (8)	0.0009 (7)
N2	0.0483 (11)	0.0305 (9)	0.0589 (11)	0.0027 (7)	0.0363 (9)	0.0028 (8)
N6	0.0456 (10)	0.0267 (8)	0.0507 (10)	-0.0021 (7)	0.0270 (8)	0.0009 (7)
N4	0.0518 (11)	0.0327 (9)	0.0561 (11)	-0.0061 (8)	0.0343 (9)	-0.0012 (8)
C6	0.0334 (10)	0.0265 (9)	0.0358 (10)	-0.0001 (7)	0.0152 (8)	-0.0004 (7)
N5	0.0529 (11)	0.0299 (9)	0.0581 (11)	-0.0034 (8)	0.0346 (9)	-0.0008 (8)
C4	0.0313 (9)	0.0259 (9)	0.0368 (10)	-0.0001 (7)	0.0149 (8)	0.0011 (7)
C2	0.0341 (10)	0.0284 (9)	0.0419 (11)	0.0044 (8)	0.0186 (8)	-0.0002 (8)
C3	0.0368 (10)	0.0238 (9)	0.0422 (11)	0.0017 (7)	0.0158 (8)	-0.0001 (8)
C5	0.0358 (10)	0.0281 (9)	0.0437 (11)	0.0035 (8)	0.0218 (8)	0.0018 (8)
N7	0.0468 (10)	0.0227 (8)	0.0486 (10)	0.0051 (7)	0.0279 (8)	0.0046 (7)
N9	0.0410 (10)	0.0264 (8)	0.0510 (10)	0.0036 (7)	0.0265 (8)	0.0027 (7)
N8	0.0473 (11)	0.0334 (9)	0.0586 (11)	0.0043 (8)	0.0345 (9)	0.0034 (8)
C7	0.0328 (10)	0.0327 (10)	0.0353 (10)	0.0024 (8)	0.0143 (8)	0.0018 (8)
N10	0.0473 (11)	0.0343 (9)	0.0569 (11)	0.0066 (8)	0.0320 (9)	0.0036 (8)
N12	0.0431 (10)	0.0293 (8)	0.0477 (10)	0.0038 (7)	0.0256 (8)	0.0015 (7)
C12	0.0348 (10)	0.0266 (9)	0.0339 (9)	0.0021 (7)	0.0142 (8)	0.0033 (7)
N11	0.0489 (11)	0.0344 (10)	0.0560 (11)	0.0059 (8)	0.0316 (9)	0.0010 (8)
C10	0.0328 (10)	0.0282 (9)	0.0325 (9)	0.0027 (7)	0.0139 (8)	0.0015 (7)
C9	0.0375 (10)	0.0236 (9)	0.0431 (11)	0.0009 (7)	0.0168 (9)	0.0031 (8)
C11	0.0427 (11)	0.0296 (10)	0.0446 (11)	0.0017 (8)	0.0253 (9)	0.0037 (8)
C8	0.0344 (10)	0.0298 (10)	0.0409 (10)	-0.0010 (8)	0.0178 (8)	0.0040 (8)
Cl1	0.0567 (3)	0.0300 (3)	0.0626 (4)	-0.0067 (2)	0.0336 (3)	-0.0052 (2)
Cl2	0.0502 (3)	0.0282 (3)	0.0624 (4)	0.0046 (2)	0.0273 (3)	0.0040 (2)

Geometric parameters (Å, °)

N1—C1	1.355 (2)	N7—C7	1.355 (2)
N1—C5	1.356 (2)	N7—C11	1.358 (2)
N1—H1	0.8600	N7—H7	0.8600
N3—N4	1.338 (2)	N9—N10	1.339 (2)
N3—C6	1.340 (2)	N9—C12	1.341 (2)
N3—H3A	0.8600	N9—H9A	0.8600
C1—N2	1.325 (2)	N8—C7	1.323 (2)
C1—C2	1.411 (3)	N8—H8A	0.8600
N2—H2A	0.8600	N8—H8B	0.8600
N2—H2B	0.8600	C7—C8	1.415 (3)
N6—C6	1.320 (2)	N10—N11	1.292 (2)
N6—N5	1.362 (2)	N12—C12	1.318 (2)
N4—N5	1.291 (2)	N12—N11	1.365 (2)
C6—C4	1.457 (2)	C12—C10	1.459 (2)
C4—C5	1.363 (3)	C10—C11	1.364 (3)

C4—C3	1.421 (3)	C10—C9	1.419 (3)
C2—C3	1.361 (3)	С9—С8	1.357 (3)
С2—Н2	0.9300	С9—Н9	0.9300
С3—Н3	0.9300	C11—H11	0.9300
С5—Н5	0.9300	С8—Н8	0.9300
C1—N1—C5	123.42 (16)	C7—N7—C11	123.49 (17)
C1—N1—H1	118.3	C7—N7—H7	118.3
C5—N1—H1	118.3	C11—N7—H7	118.3
N4—N3—C6	109.55 (16)	N10—N9—C12	109.34 (16)
N4—N3—H3A	125.2	N10—N9—H9A	125.3
С6—N3—H3A	125.2	С12—N9—H9А	125.3
N2—C1—N1	119.62 (17)	C7—N8—H8A	120.0
N_2 —C1—C2	122.91 (17)	C7—N8—H8B	120.0
N1 - C1 - C2	117 47 (16)	H8A—N8—H8B	120.0
C1 = N2 = H2A	120.0	N8-C7-N7	119.82 (18)
C1 = N2 = H2R	120.0	N8-C7-C8	122 80 (18)
$H_2 \Lambda_{-N_2} H_2 B$	120.0	N7	117.36(17)
C6 N6 N5	120.0	N11 N10 N0	117.30(17) 106.12(15)
CO	105.81(10) 105.80(15)	C12 N12 N11	100.13(13)
$N_{\rm M} = N_{\rm M} = N_{\rm M}$	103.89 (13)	C12—N12—N11	103.93 (10)
N6-C6-N3	10/.6/(16)	N12-C12-N9	107.80 (16)
N6-C6-C4	126.56 (17)	N12-C12-C10	126.32 (17)
N3—C6—C4	125.76 (17)	N9—C12—C10	125.87 (17)
N4—N5—N6	111.08 (16)	N10—N11—N12	110.78 (16)
C5—C4—C3	117.77 (17)	C11—C10—C9	118.05 (17)
C5—C4—C6	120.74 (17)	C11—C10—C12	120.76 (17)
C3—C4—C6	121.49 (16)	C9—C10—C12	121.19 (17)
C3—C2—C1	119.91 (17)	C8—C9—C10	120.89 (17)
С3—С2—Н2	120.0	С8—С9—Н9	119.6
С1—С2—Н2	120.0	С10—С9—Н9	119.6
C2—C3—C4	120.90 (17)	N7—C11—C10	120.20 (17)
С2—С3—Н3	119.5	N7—C11—H11	119.9
С4—С3—Н3	119.5	C10-C11-H11	119.9
N1C5C4	120.49 (17)	C9—C8—C7	119.93 (17)
N1—C5—H5	119.8	С9—С8—Н8	120.0
С4—С5—Н5	119.8	С7—С8—Н8	120.0
C5—N1—C1—N2	177.74 (19)	C11—N7—C7—N8	176.37 (19)
C5—N1—C1—C2	-1.8 (3)	C11—N7—C7—C8	-1.9 (3)
C6—N3—N4—N5	0.0 (2)	C12—N9—N10—N11	-0.2 (2)
N5—N6—C6—N3	0.1 (2)	N11—N12—C12—N9	-0.2(2)
N5—N6—C6—C4	179.20 (18)	N11—N12—C12—C10	179.35 (18)
N4—N3—C6—N6	0.0 (2)	N10—N9—C12—N12	0.3 (2)
N4—N3—C6—C4	-179 15 (19)	N10-N9-C12-C10	-17930(18)
N3N4N5N6	01(2)	N9_N10_N11_N12	01(2)
C6—N6—N5—N4	-01(2)	C12-N12-N11-N10	0.1(2)
N6-C6-C4-C5	1757(2)	N12 - C12 - C10 - C11	-173 8 (2)
N3-C6-C4-C5	-5A(3)	$N_{0} = C_{12} = C_{10} = C_{11}$	5.6 (3)
$N_{6} = C_{6} = C_{4} = C_{3}^{2}$	-4.9(3)	N12 - C12 - C10 - C0	5.0(3)
$N_{2} = C_{4} = C_{3}$	т.7 (<i>J)</i> 172 00 (10)	N0 $C12$ $C10$ $C0$	-174.92(10)
NJ-00-04-03	1/3.99 (19)	IN9-C12-C10-C9	-1/4.82 (19)

supplementary materials

N2-C1-C2-C3 N1-C1-C2-C3 C1-C2-C3-C4 C5-C4-C3-C2 C6-C4-C3-C2 C1-N1-C5-C4 C3-C4-C5-N1 C6-C4-C5-N1	-178.97 (19) 0.6 (3) 0.9 (3) -1.2 (3) 179.48 (19) 1.6 (3) 0.0 (3) 179.36 (18)	C11—C10—C9—C8 C12—C10—C9—C8 C7—N7—C11—C10 C9—C10—C11—N7 C12—C10—C11—N7 C10—C9—C8—C7 N8—C7—C8—C9 N7—C7—C8—C9		-1.1 (3) 179.35 (18) -0.6 (3) 2.1 (3) -178.31 (18) -1.4 (3) -175.3 (2) 2.9 (3)
<i>Hydrogen-bond geometry</i> (A, \circ)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1···N5 ⁱ	0.86	2.59	3.317 (2)	143
N1—H1···N6 ⁱ	0.86	2.04	2.894 (2)	171
N2—H2A…N5 ⁱ	0.86	2.15	2.972 (3)	160
N7—H7…N11 ⁱⁱ	0.86	2.57	3.304 (2)	144
N7—H7···N12 ⁱⁱ	0.86	2.06	2.913 (2)	169
N8—H8A…N11 ⁱⁱ	0.86	2.20	3.024 (3)	160
N2—H2B…Cl1 ⁱⁱⁱ	0.86	2.36	3.2187 (18)	177
N3—H3A····Cl2 ⁱ	0.86	2.17	3.0047 (19)	165
N8—H8B…Cl2 ^{iv}	0.86	2.39	3.2432 (18)	172
N9—H9A…Cl1 ^v	0.86	2.18	3.0031 (18)	160

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+2, *y*+1/2, -*z*+1/2; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) *x*, -*y*+1/2, *z*+1/2; (v) -*x*+2, *y*-1/2, -*z*+1/2; 2.

Fig. 1

